Polynomial Identities for Hypermatrices

نویسنده

  • Victor Tapia
چکیده

We develop an algorithm to construct algebraic invariants for hypermatrices. We then construct hyperdeterminants and exhibit a generalization of the Cayley–Hamilton theorem for hypermatrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rings with a setwise polynomial-like condition

Let $R$ be an infinite ring. Here we prove that if $0_R$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin X}$ for every infinite subset $X$ of $R$, then $R$ satisfies the polynomial identity $x^n=0$. Also we prove that if $0_R$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in X}$ for every infinite subset $X$ of $R$, then $x^n=x$ for all $xin R$.

متن کامل

ar X iv : m at h - ph / 0 20 80 10 v 2 7 A ug 2 00 2 ALGEBRAIC INVARIANTS , DETERMINANTS , AND CAYLEY – HAMILTON THEOREM FOR HYPERMATRICES . THE FOURTH – RANK CASE

We develop a method to construct algebraic invariants for hypermatrices. We then construct hyperdeterminants and exhibit a generalization of the Cayley–Hamilton theorem for hypermatrices.

متن کامل

ar X iv : m at h - ph / 0 20 80 10 v 1 6 A ug 2 00 2 ALGEBRAIC INVARIANTS , DETERMINANTS , AND CAYLEY – HAMILTON THEOREM FOR HYPERMATRICES . THE FOURTH – RANK CASE

We develop a method to construct algebraic invariants for hypermatrices. We then construct hyperdeterminants and exhibit a generalization of the Cayley–Hamilton theorem for hypermatrices.

متن کامل

Supersymmetric Hypermatrix Lie Algebra and Hypermatrix Groups Generated by the Dihedral Set D3

This work is an investigation into the structure and properties of supersymmetric hypermatrix Lie algebra generated by elements of the dihedral group D3. It is based on previous work on the subject of supersymmetric Lie algebra (Schreiber, 2012). In preview work I used several new algebraic tools; namely cubic hypermatrices (including special arrangements of such hypermatrices) and I obtained a...

متن کامل

Spectra of Uniform Hypergraphs

We present a spectral theory of uniform hypergraphs that closely parallels Spectral Graph Theory. A number of recent developments building upon classical work has led to a rich understanding of “symmetric hyperdeterminants” of hypermatrices, a.k.a. multidimensional arrays. Symmetric hyperdeterminants share many properties with determinants, but the context of multilinear algebra is substantiall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008